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Abstract: In previous research, a polylactic chitin starch composite was prepared without the use of a
solvent to enhance the miscibility. In this study, a polylactic acid (PLA) chitin starch composite was
produced with chloroform as a plasticizer in the ratio 1:10. The blending of chitin and starch with
PLA ranges from 2% to 8%. Tensile strength, impact, thermogravimetry analysis-Fourier-transform
infrared spectroscopy (TGA)-FTIR, and differential scanning calorimetry (DSC) were used to test the
thermomechanical properties. Also, the morphological properties, water absorption, and wear rate of
the material was observed. The results showed that the tensile strength, yield strength, and impact
strength were improved compared to the pure polylactic acid. Also, the elastic modulus of the
samples increased, but were lower compared to that of the pure polylactic acid. The result of the
fractured surface morphology showed good miscibility of the blending, which accounted for the good
mechanical properties recorded in the study. The thermogravimetric analysis (TGA) and derivative
thermogravimetric analysis DTA show a single degradation and peak respectively, which is also
shown in the glass temperature measures from the DSC analysis. The water absorption test shows
that the water absorption rate increases with starch content and the wear rate recorded sample A
(92% P/8% C) as the highest. The high miscibility projected was achieved with no void, with the use
of chloroform as a plasticizer.

Keywords: miscibility; extrusion; composite; biopolymer

1. Introduction

The role of natural polymers as a replacement of synthetic ones has been on the increase with
the goal of achieving a sustainable environment. Synthetic polymers have excellent properties with
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various industrial applications. As the population grows, the challenge of land and marine pollution
due to plastic waste is also on the increase [1,2]. Globally it is estimated that 6–12 million tons of
plastic waste enters the ocean each year [1]. The marine waste pollution has resulted in the death of
aquatic animals first as they feed on the plastic waste, and also due to the wounds from sharp objects
from solid plastics [3]. The likely cause of death from marine pollution from plastics is higher than
compared to that of oil spillage each year.

Several policies and logos have been developed on the proper disposal of plastic waste.
Manufacturing companies have a symbol on their product to show the proper disposal of the
packaging material after use. The use of these symbols by manufacturing to curb plastic waste
pollution has not been as active as the the increase in plastic waste improper disposal. Two primary
solutions have been identified to solve this problem [4]. First is the production of reusable plastic
packaging material and second is the production of biodegradable packaging material. The latter
seems to be a permanent solution to this problem.

The production of biodegradable packaging material to combat the problem of pollution has
resulted in the use of biopolymers such as starch, cellulose, and chitin. These biopolymers are abundant
on the earth and have been used and processed into different forms. Biopolymers in these forms have
a significant setback in their mechanical properties. Among the processed form of starch (from corn) is
polylactic acid.

Polylactic acid (PLA), which is one of the most promising natural polymers from a renewable
source, has been previously researched for this purpose. PLA is similar in properties to most synthetic
polymers used in industrial applications such as polyethene and nylon. Several researchers have
worked on the polymer or its composite for packaging [5–11]. The focus of these studies are measures
to improve on mechanical and thermal properties and biodegradation. Researchers that worked on
polylactic acid to solve the problem of mechanical and thermal/biodegradation have done so either
through blending and reinforcement. Some of the previous research has been on the use of chitin or
starch independently [12].

Significant reports in the literature established that there is a need for the use of plasticizer to
improve the miscibility of polylactic acid-starch polymer blends [13–16]. Jariyasakoolroj et al. [17]
achieved an increase in the tensile and yield strength of polylactic acid-starch composite using silane
coupling as a compatibilizer, Wu et al. [18] produced a low molecular weight PLA using various
alcohols before mixing with starch. Good miscibility and degradation were achieved using various
alcohols but with reduced mechanical properties due to reaction of the plasticizer with the composite.
Also, Clasen et al. [19] used maleic anhydride as a plasticizer. An improvement was noticed in the
miscibility of the resulting composite, but the mechanical properties were affected. Kasinee et al. [20]
use poly(methyl methacrylate) to modify starch before mixing with PLA. The resulting polymer
composite was hydrophobic, and the tensile and yield strength was improved.

Also, previous work on polylactic acid–chitin composites resulted in similar challenge of
immiscibility. According to reported literature, use of a plasticizer was suggested by some researchers.
As an example, Grande et al. [21] worked on improving the miscibility of polylactic acid-chitin by
using polyvinyl alcohol and glycerol as compatibilizer and plasticizer respectively. They reported
that chitosan spread in the composite as particles in the melt blend. Maria et al. [22] in their work on
plasticized polylactic acid using tributyl o-acetyl citrate (ATBC) mixed with chitosan. Good mixability
was achieved with improved mechanical and antimicrobial activities. Fathima et al. [23] used
polyethene glycol as a cross-linking agent and polyvinyl alcohol as a plasticizer to produce a polylactic
acid chitin composite with improved mechanical properties.
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All the studies focused on the use of starch or chitin at different time. Starch is found to improve
the degradation properties of PLA and chitin the mechanical properties, but the effect of starch–chitin
blend on PLA has not been researched; hence, the novelty of this work. Also, the use of chloroform as
the medium of miscibility for the three polymers has not been researched. This study seeks to produce
a polylactic-chitin-starch with improved miscibility using chloroform. The mechanical properties,
thermal degradation, and morphology were investigated.

2. Materials and Methods

2.1. Materials

Pelletized polylactic acid 4044D reactive extrusion grade was used for the experiment. The PLA,
acquired from NatureWorks (Minnetonka, MN, USA), with a specific gravity of 1.24, glass temperature
between 55–60 ◦C, mass flow rate (MFR) (g/10 min), relative viscosity 4.0, semi-crystalline with melting
peak between 150–170 ◦C, and solubility of 1.0 g/dL in chloroform at 30 ◦C. The tensile strength and
modulus are 58 MPa and 3387 MPa respectively. Corn starch (particle size range 0.050 µm to 1 µm)
and practical grade chitin (shrimp, particle size range 0.050 µm to 1 µm) from Sigma Aldrich (Selangor,
Malaysia) in powdered form were used for the experiment. Chloroform was purchased from ChemPur
(Selangor, Malaysia).

2.2. Composite Preparation

The polylactic acid (P) was kept at a constant percentage (92 wt %) while the starch (S) varies from
2% to 8% and chitin (C) also varies from 2% to 8% of the composition. Five samples were produced A,
B, C, D, and E with blend percentage variation in chitin (C) and starch (S); P8C, P6C2S, P4C4S, P2C6S,
and P8S respectively. The 100% polylactic acid is labelled sample F.

The polylactic pellets were dried in a vacuum dryer (drying ovens, sterilizers UM series, Lilienthal,
Germany) for 24 h at 60 ◦C. The PLA pellets were dissolved in chloroform (CF) and mechanically stirred
until the pellets were dissolved at 60 ◦C. The PLA/CF were mixed in the ratio 1:10, and mechanical
stirring was applied for 6 h to form a uniform mix of the blend. Starch and chitin were added to the
mixed PLA/CF. The mix was then extruded using a twin-screw extruder (LABTECH, Samutprakarn,
Thailand) into filament. The filament was later pelletized using LABTECH pelletizer (LABTECH,
Samutprakarn, Thailand). The pellets were air-dried for 24 h at 40 ◦C using in Memmert drying cabinet
model ULM 500 (drying ovens, sterilizers UM series, Lilienthal, Germany). The composite pellets
were moulded into test samples at 150 ◦C using a Carver press compression (Carver 2697 Hydraulic
Heated Platen Press Bench Mod, Warwickshire, UK) moulding machine. The samples were stored in
zip-lock bags

2.3. Characterization

2.3.1. Tensile Test

The tensile test was done using a MT1175 (Dia-Stron Instruments, Andover, UK) at ASTM D3039
for the polymer composite. Standard test samples were prepared, and the results for the tensile
strength, tensile modulus and yield strength were obtained.

2.3.2. Impact test

The impact test was done using a Ceast Resil 7181 Impactor (Corporate Consulting, Service
and Instruments (CCSi), Akron, OH, USA) to obtain the resilience of the material in Joules per
square meter. A standard test D256 was used for the test with specified dimensions. The composite
morphological properties were done using scanning electron microscopy (EVO MA 10, Carl-ZEISS
SMT, Oberkochen, Germany). The fractured surface morphology of the impact samples was done to
examine the miscibility of the blend using plasticizer.
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2.3.3. Thermogravimetry analysis (TGA)–FTIR Test

The thermogravimetry analysis (TGA-DTA) was conducted using a Mettler-Toledo
thermogravimetric analyzer model TGA/DSC 1, (Mettler-Toledo, Greifensee, Switzerland). A mass
range of 20 mg to 22 mg was used for the test at a temperature range of 20 ◦C to 900 ◦C. The weight loss
and derivative weight loss against temperature values was obtained for the TGA and DTA respectively.
The test was done in an air environment. Also, the FTIR analysis (Perkin-Elmer, PC1600, Winter Street
Waltham, MA, USA) was done as a standard test. The analysis procedure was done with an absorption
spectrum range of 400 to 6000 cm−1.

2.3.4. Differential Scanning Calorimetry Analysis

The differential scanning calorimetry was done, using Perkin–Elmer differential scanning
calorimetry (DSC) model 6 (Perkin–Elmer, Schwerzenbach, Switzerland), to further analyses the
behaviour of the material with temperature change. Measurement of the glass transition temperature,
crystallization, and melting temperatures were recorded with a mass range between 5 mg to 7 mg.

2.3.5. Abrasive Wear Test

The wear rate of the composite was done to estimate and study the wear behaviour of the materials
using a ball-on-disk tribological technique. ASTM G99-05 standard test method was used to carry out
the dry sliding wear tests with a ball-on-disk tribometer (UMT-2, Bruker, formerly known as CETR,
Bruker, Billerica, MA, USA). Continuous monitoring of the coefficient of friction (COF) was observed
throughout the test; a mean COF was determined and reported. The wear volume was determined by
continuously recording the weight difference before and after each test using a very sensitive analytical
weighing balance (Shimadzu AY120) which can weigh up to 0.0001 g. The volume material loss (V) of
the samples was calculated using the equation

V = ∆w/% (1)

where w = weigh before test–weight after test and % = density of the various nanocomposites. Finally,
the specific wear rate, k, was determined based on the Lancaster relationship

k = V/F_N. (2)

2.3.6. Water Absorption Test

The water absorption rate was determined by measuring the initial mass and the final mass of the
samples after 72 h of immersion in water. The samples were oven-dried, and the water absorption
was determined using American Society for Testing and Materials (ASTM) test method D570-81.
The contact angle was also determined using the mean value of the 5 mL water released to the surface of
the composite and shot with a contact angle analyzer (KSV CAM 101; KSV Instruments Ltd., Helsinki,
Finland).

3. Results

3.1. Tensile Properties

The tensile, yield, and tensile modulus result of plasticized polylactic acid composite for the
six samples is shown in Figures 1 and 2. The result shows an increase in the values of the tensile
strength when compared with that of pure PLA (sample F). The tensile strength is seen to reduce
with an increase in starch content and decrease chitin content. This is an indication of the miscibility
of the three polymer blends [12,24]. Also, the increase in tensile strength is between 59% to 85%.
The tensile strength is seen to have the highest value at 6% of chitin and 2% of starch (sample B)
blending. This result is in correlation with the tensile properties reported by [25]. In their report,
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the tensile strength of the PLA composite increase with chitin content from 1% to 5% blending, but a
drop is noticed in the composite with 10% reinforcement. Also, in the work of [26] on PLA-starch,
an increase in tensile strength was reported with reduced starch content.
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The yield strength was improved, which can be attributed to the effect of the plasticizer on
the blend. Sample B was seen to have the highest yield strength. Comparing with the literature of
previously produced polylactic acid starch and polylactic chitin, the report of [24] on polylactic chitin
with glycerol as plasticizer showed a similar trend in yield strength.

The tensile modulus value reduced compared with the pure polylactic acid [27], but the value of
the modulus increases with an increase in chitin percentage and reduction in starch. Sample B was
seen to have the highest yield strength and young modulus value. Comparing with the literature
of previously produced polylactic acid starch composite and polylactic chitin composite, the report
of Nasrin et al. [24] on polylactic chitin with glycerol as plasticizer showed a similar trend in yield
strength and elastic modulus. The excellent mechanical properties of the composite are probably due
to the combined effect of the physical mobility of the constituent, enabled using chloroform and the
compatibility interfacial bonding by the chitin [12,25].

The contact angle, which describes the wettability of the polymer composite, is seen to decrease
with an increase in the percentage of starch and is generally lower than 90 for the composite samples.
The neat PLA is seen to have the highest contact angle. The polysaccharides (chitin and starch) are
seen to improve the wettability of the neat PLA. The contact angle of PLA/chitin is next in value to neat
PLA and the contact angle drop with the addition of starch content. The lowest is at 8% starch (sample
E, Figure 1).

3.2. Impact and Morphological Properties

The impact strength of the resulting composite is shown in Figure 2. The impact strength is
higher compared with the neat polylactic acid (sample F). Sample A is seen to have the highest impact
strength, and this may be due to the presence of a high percentage of chitin in the blending. The impact
strength, when blended with chitin or starch, has been reported to increase more than pure PLA [28].
The impact strength is lowered with increased content of starch in the composite because the effect of
chitin content on the impact strength is high. Also, the interfacial adhesion of PLA and chitin plays a
significant factor in the value of the impact strength. The interfacial adhesion between PLA and starch
is seen to reduce with increased starch content as reported by [27].

The scan electron microscopy of the impact fractured surface shows a smooth morphology of
the fractured samples (Figure 3). There is high miscibility of the polymer blend and this accounts
for the good mechanical strength of the composite. This miscibility of the polymer composite can be
attributed to the use of chloroform as the plasticizer and the interfacial bonding of PLA/chitin and chitin
/starch. Chitin has been reported to act as a compatibilizer between PLA and starch [12,24,25,29,30].
The images are characterized with network flakes of starch–chitin blends and edges with no voids.
The researchers in [31] reported the same experience using glycerol/sorbitol as a plasticizer for polylactic
starch. The report stated that fine microstructure was as a result of the use of a plasticizer. This was also
accompanied by improvement in mechanical properties, but low crystallization, as seen in this study.
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Figure 3. Scanning electron microscope images for samples with the ratios A—92% polylactic acid
(P)/8% chitin (C); B—92% P/6% C/2% starch (S); C— 92% P/4% C/4% S; D—92% P/2% C/6% S; E—92%
P/8% S; F—100% P.

3.3. Thermogravimetry Analysis Result

The result of the TGA - DTA, is shown in Figure 4a,b. The TGA curve (Figure 4a) shows a
single drop, with no initial weight loss, in its decomposition curve, and this is also verified from the
DTA curve. The weight loss for samples A, B, C, D, and E started at 254 ◦C, 253 ◦C, 278 ◦C, 249 ◦C,
and 247 ◦C respectively with maximum weight loss at 345 ◦C, 385 ◦C, 379 ◦C, 379 ◦C, and 385 ◦C.
The lowered value of the onset temperature decreases with increase in starch content, and this has
been reported by [18,26]. The thermal degradation behaviour of sample A and B look similar which
shows domination of the chitin content, but above 312 ◦C, during the degradation, a slit difference
was noticed.

The drop-in weight loss of samples A, B, C, D, and E is 97%, 97%, 96%, 94%, and 98%. This shows
that samples decomposition percentage drop is high with less than 6% of residue. Sample E having the
highest decomposition percentage can be traced to the characteristic of high starch content. Starch has
been reported to improve the degradation behaviour of PLA [26,27]. Generally, the degradation is
improved compared with pure PLA (sample F) and this could be as a result of starch or plasticizer,
as reported by [27]. Also, the TGA curve shows the presence of residue after the decomposition region
as a continuous horizontal line which is expected from the combustion of polymers.

The DTA curve (Figure 4b) shows an endothermic peak with values for samples A, B, C, D, and E
at 336 ◦C, 357 ◦C, 364 ◦C 348 ◦C, and 369 ◦C respectively and this shows the different application where
the material can be used. Above this temperature, the material fails. The curve also reveals that sample
E has the highest decomposition temperature, which is typical of the presence of starch.
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Figure 4. (a) Thermogravimetry analysis (TGA) result of samples A—92% polylactic acid (P)/8% chitin
(C); B—92% P/6% C/2% starch (S); C—92% P/4% C/4% S; D—92% P/2% C/6% S; E—92% P/8% S; F—100%
P. (b) Derivative thermogravimetric analysis (DTA) result of samples A—92% polylactic acid (P)/8%
chitin (C); B—92% P/6% C/2% starch (S); C—92% P/4% C/4% S; D—92% P/2% C/6% S; E—92% P/8% S;
F—100% P.

3.4. FTIR Properties

The FTIR result (Figure 5) shows the possible bond present during the decomposition and the gas
involved during the thermal analysis. It also reveals the possibility of present residue. The FTIR result
shows possible bonds of C=O, C=N, and C=C for wavenumber 1500 cm−1 to 2000 cm−1. The C=O and
C=N are most likely from the chitin content. Also, the plasticizer seems not to be reflected in the FTIR
result and no –CH3 or C–Cl bond is noticed in the result. The C=O and C–H are generally expected
from polymers, but the C–N most likely is from the chitin decomposition. The formation of interfacial
bonding is shown in Figure 6.
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3.5. Differential Scanning Calorimetry

Figure 7 shows the graphical representation and Table 1 shows a summary of the results of the
differential scanning calorimetry. The table shows the glass temperature, melting temperature and
crystalline temperature of the samples. Also, the heat of melting and crystallization is reported in the
table. The DSC cure shows single sharp peaks for the glass temperature, which shows the compatibility
of the polymer using the plasticizer. The glass transition temperature is seen to be highest with sample
E composite and lowest with sample C, likely due to the difference in the nature of chitin and starch,
which are in equal proportion. The peak and crystallization temperatures of the samples are seen to
increase with the increase in starch content and reduced chitin content. Samples C and D are seen
to have low enthalpy at crystallization and melting, which shows the composite cannot retain heat.
A single endothermic peak was observed for the melting against the usual double peak for the PLA
composite reported by [27].
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Table 1. Summary of the results for differential scanning calorimetry (DSC).

Samples Mass Glass
Temp. Crystallization Melting

(g) ◦C
Peak
Temp.
◦C

Crys.
Temp.
◦C

Heat of
Crys.
J/g

Peak
Temp.
◦C

Melting
Temp.
◦C

Heat of
Melting

J/g

A 5.67 58.04 128.53 113.55 1.77 146.13 141.35 1.56
B 6.80 62.30 104.31 96.37 30.45 167.23 161.73 38.69
C 6.63 57.33 108.30 99.65 4.209 141.98 131.25 4.368
D 5.51 59.20 125.90 109.77 6.233 147.52 141.86 7.761
E 5.70 62.20 107.58 98.07 28.06 167.5 162.17 36.41
F 5.60 59.96 107.37 97.56 27.49 167.43 162.12 32.32

Temp—Temperature; Crys.—Crystallization.

3.6. Wear Properties

The wear test was done to study the response of the material to abrasive force to know the
applicability of the material to a specific application. The wear properties of the polymer composite
state its response to rubbing of scrubbing when in use. In this study, the effect of the blending of the
polysaccharides (chitin and starch) on the wear properties of PLA is investigated (Figure 8a). Generally,
the wear resistance of the composite is reduced compared to the neat PLA (sample F). The wear
resistance of the composite increases with an increase in starch content and decreasing chitin content.
The explanation for this is that as the starch content increases, the friction on the surface of the polymer
composite reduces. Therefore, the wear rate reduces. This is logical as the abrasive wear is dependent
on the surface friction. A similar result was reported by [32] in their research on PLA/starch composites.
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3.7. Water Absorption

The water absorption is an essential property of a biodegradable polymer composite. The water
absorption of the composite in this study increased with the percentage of starch and decreasing
chitin content. The effect of starch content is more significant than that of chitin, from Figure 8b.
The starch in the polymer composite increases the water absorption due to the formation of hydrogen
bonding between the water molecule and the starch. Sample E (with the highest starch content) has
the maximum water absorption, and the neat PLA has the least. The water absorption of starch is
attributed to the hygroscopic nature of the polysaccharide. This result is similar to those in [33–37].

4. Conclusions

The thermochemical properties of polylactic acid blends with chitin and starch were studied.
The results show good mechanical properties in terms of tensile strength, yield, and impact, with
sample B having the highest value. The thermogravimetry analysis shows that the composites are
stable thermally with a single degradation curve and glass transition temperature. The morphological
properties show good compatibility and fine structured network distribution of the blends with no
void. The composite is a good substitute for synthetic composites for plastic packaging based on
the results.
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